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Abstract—In the future, we can expect to see more dynamic
service offerings and profiles, as users move from long-term ser-
vice provider agreements to more opportunistic service models.
Moreover, when the radio spectrum is itself traded in a market-
based scenario, wireless service providers (WSPs) will likely
require new strategies to deploy services, define service profiles,
and price them. Currently, there is little understanding on how
such a dynamic trading system will operate so as to make the
system feasible under economic terms. From an economic point
of view, we analyze two main components of this overall trading
system: i) spectrum allocation to WSPs and ii) interaction of end
users with the WSPs.

For this two-tier trading system, we present a winner deter-
mining sealed-bid knapsack auction mechanism that dynamically
allocates spectrum to the WSPs based on their bids. We propose
a dynamic pricing strategy based on game theory to capture the
conflict of interest between WSPs and end users, both of whom
try to maximize their respective net utilities. We show that even in
such a greedy and non-cooperative behavioral game model, it is in
the best interest of the WSPs to adhere to a price threshold which
is a consequence of a price equilibrium in an oligopoly situation.
Through simulation results, we show that the proposed auction
entices the WSPs to participate in the auction, makes optimal
use of the common spectrum pool, and avoids collusion among
WSPs. Moreover, numerical results demonstrate how pricing can
be used as an effective tool for providing incentives to the WSPs
to upgrade their network resources and offer better services.

I. I NTRODUCTION

The presence of multiple wireless service providers in
any geographic region together with the freedom of users
in switching wireless service providers (WSPs) is forcing
a competitive environment where each WSP is trying to
maximize its profit. Essentially, a wireless service provider
buys spectrum from the spectrum owner (for example, Federal
Communications Commission in the United States of Amer-
ica) with a certain price and then sells the spectrum to the end
users in the form of services (bandwidth). In such a scenario,
the goal of each service provider is twofold: get a large share
of users and the necessary spectrum to fulfill the demands of
these users. As both the number of end users and capacity of
spectrum band are finite, this gives birth to an interrelated two-
tier competitive behavior, where wireless service providers

compete among themselves to acquire a large portion of the
spectrum and also attract as many users as possible. Though
the resource allocation strategies of competing WSPs have
been investigated in [11], to the best of our knowledge, this
research is the first attempt to analyze the economic aspects
that arise due to the interactions between spectrum owner,
wireless service providers, and users.

A. Dynamic spectrum allocation

In most countries, chunks of spectrum are statically allo-
cated to the WSPs [8]. Spectrum usage being both space and
time dependent, a static allocation often leads to low spectrum
utilization as reported in [26]. Static allocation also results in
fragmentation of the spectrum creating “white space” (unused
bands) that cannot be allocated to licensed/unlicensed services.

In order to break away from the inflexibility and inef-
ficiencies of static allocation, a new concept ofDynamic
Spectrum Allocation(DSA) is recently being investigated by
network and radio engineers, policy makers, and economists.
In DSA, spectrum will be allocated dynamically depending
on need of the service providers which in turn depends on
end users’ demands in a time and space variant manner [3].
Emerging wireless technologies such as cognitive radios [13]
will make DSA a reality. In DSA, the spectrum owner will
create a common pool ofopenspectrum. Though this common
spectrum can be created by taking back all the previously
(statically) allocated spectrum chunks, it is not an option
because of monies already invested. However, parts of the
spectrum band that are not allocated or are no longer used
can be made open to the WSPs. These parts of the band,
that are open to all are known as the coordinated access band
(CAB) [4].

B. Economic paradigm shift

Currently, each provider gets a chunk of the spectrum
and has a unique user pool that they cater to. In future,
a paradigm shift as depicted in figure 1, is very likely to
occur where each provider will get a part of the spectrum
from the common spectrum pool as and when they need



through a spectrum broker. It is also anticipated that the
concept ofservice broker, technically known as Mobile Virtual
Network Operators (MVNO) [24], will evolve that will act
as an interface between the providers and the users [19].
The users will be able to select their service provider as per
their requirements through the service broker. In light of these
new developments, it is important to investigate the economic
issues that has a profound impact on the service quality and
the prices paid by the end users.

The most important factors that the WSPs need to consider
are the amount of spectrum they need and theprice are
they willing to pay. In effect, estimation of thedemand for
bandwidth and expected revenuewill drive the provider’s
strategies. Service pricing by the providers, in turn, will affect
the demand for the services by the users, thus resulting in a
cyclic dependency in a typical supply-demand scenario. As
a result, the relationship between spectrum owner and WSP
has a strong correlation with the relationship between WSPs
and end-users and must be analyzed together unlike any other
industry service model.
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Fig. 1. The paradigm shift

In this paper, we devise a “winner determining sealed bid
knapsack auction” mechanism for dynamic allocation of the
spectrum from the coordinated access band (CAB). The WSPs
bid to acquireextra chunks of spectrum in addition to the
statically allocated band. We map the winner determination
problem to the knapsack problem and use a sealed-bid mech-
anism to find the optimal allocation. Through a game-theoretic
model, the conflicting objectives that are inherent in the WSP-
user interactions are captured. We deviate from the notion of
per-service static prices [12] and allow the providers to set
the prices dynamically in order to maximize their profit and
minimize resource wastage. Such a market mechanism is more
flexible and realistic, as there does not exist any centralized
authority to determine the price of a service. We prove the
existence of an price (Nash) equilibrium, where no provider
finds it beneficial to change its price unilaterally [15]. We
also answer the following questions: i) how the spectrum
is allocated from the coordinated access band (CAB) to the
service providers, ii) how service providers determine the price
of their services, and iii) how are the above two inter-related.

The rest of the paper is organized as follows. In section II,
we discuss the relatively small body of work that relates to this
research. We describe the proposed auction method in section
III. The game models and equilibria conditions are presented in
section IV. The demand for bandwidth is estimated in section
V. The simulation model and results are presented in section
VI. Conclusions are drawn in the last section.

II. RELATED WORK

Auction theory and game theory have been used to ana-
lyze problems with conflicting objectives among interacting
decision–makers. These theories have been extensively used
in various industries including the competitive energy market,
airlines industry, and Internet services. They have been proved
to be very powerful tools to deal with problems in networking
and communications from an economic point of view. This
is because the service quality that each user receives in a
competitive environment is often affected by the action of
other users who also try to contend for the same pool of
resources. A broad overview of game theory and its application
to different problems in networking and communications can
be found in [22] and the references therein. Network services,
including pricing issues, have been studied with the help of
auctions in [9], [18].

Auction theory has been used to understand markets, es-
pecially to model auction participants who bid to win and
maximize profit [16]. A large number of Internet auction
sites have been set up to process both consumer–oriented and
business–oriented transactions. Currently, most auction sites
(e.g., eBay [25]) support a basic bidding strategy through a
proxy service for a single-unit auction where bidding contin-
ues till a winner evolves. In a single unit auction, Vickrey
proved that “English” and “Dutch” type auctions yield the
same expected revenue under the assumptions of risk neutral
participants and privately known value drawn from a common
distribution [20]. Vickrey’s result is embodied in the “Revenue
Equivalence Theorem” (RET) [10]. However, with emerging
markets like electricity and spectrum band, single unit auctions
are falling short to address the issues where bidders bid
for multi-units and multiple winners emerge [1]. As bidders
compete for a part of the available resource and are willing to
pay a price forthat part only, this auction model needed must
be more generalized and is being currently investigated [2].

As far as game theory is concerned, there is an emerging
body of work that deal with decision making in a multi–
provider setting. In [5], a market in the form of a ‘bazaar’
was introduced where infrastructure–based wide area wireless
services are traded in a flexible manner and at any time scale.
The mobile bazaar architecture allows fine–grained service
through cooperative interactions based on user needs. The
problem of dynamically selecting ISPs for forwarding and
receiving packets has been studied in [21]. A multi–homed
user, i.e., user with access to multiple ISPs, has the freedom
to choose a subset of ISPs from the available ones. Zemlianov
et al. assumed the existence of two orthogonal technologies
that were overlaid [23]. In particular, cellular and WLANs



are considered where users are vertically transferred from one
network to another based on the load of each network. In [11],
service admission control was done based on the outcome of
a game and Nash equilibrium was reached using pure strategy.
Users were offered differentiated services based on the price
they paid and the service degradation they could tolerate.
However, dynamic pricing was not explored in [11]. In [14],
authors study the economic interests of a wireless access point
owner and his paying client, and model their interaction as
a dynamic game. In [7], authors presented a non–cooperative
game for pricing Internet services but concluded with an unfair
Nash equilibrium where future upgradation of the networks
were discouraged.

III. SPECTRUMALLOCATION THROUGH AUCTIONS

In this section, we analyze a part of the logical model
presented in figure 1, i.e., the interaction between the spectrum
broker and the service providers. Spectrum allocation from the
coordinated access band (CAB) can be done in two ways:
asynchronous or synchronous allocation. In asynchronous
method, whenever a service provider has a need for spectrum,
it makes a request to the spectrum broker. If available, the
spectrum broker assigns a chunk of spectrum for the lease
period, upon expiry of which, the assigned spectrum is taken
back. On the other hand in synchronous allocation, spectrum
allocations (and de-allocations) are done in a synchronous
manner i.e., providers make requests synchronously. The lease
periods can be assumed as discrete unit short span of intervals.
Here in this work, we focus on the synchronous allocation.

Similarly, pricing can be done in two ways depending on
the total demand of spectrum from the service providers. If the
total demand of spectrumdoes notexceed the spectrum avail-
able in CAB, then any of the following two pricing models can
be adopted. 1.Service provider dominant strategy:providers
advertise the price they are willing to pay. 2.Spectrum broker
dominant strategy:spectrum broker advertises a (unit) price
and service providers respond by deciding on the amount of
spectrum they can acquire.

On the other hand, if the total demand of spectrumexceeds
the total spectrum available in the CAB (which will be very
often the case and is thus the focus of our research), then
one of the strategies for the spectrum broker is to put up
the spectrum for bids and decide on the allocation based on
the bids i.e., to adopt an auction model. The auction for
spectrum can be conducted on a periodic basis and on a
small time granularity so that wireless service providers will
bid for additional spectrum from CAB synchronously as this
would allow the spectrum broker to compare all the requests
to maximize the revenue. The assumption in this model is that
service providers generates spectrum requests periodically at
the beginning of each interval.

Moreover, in this work, we focus on the additional spectrum
from CAB with regard to the bandwidth and not with regard
to the frequency. We assume that total spectrum available in
CAB is homogeneous and thus no band is superior or inferior
than any other band and thus demand for any band from the

CAB is equal. Adding frequency constraint to the spectrum
allocation problem will be rather focus of our future work.

A. Auction Issues

A good auction design is important for any type of suc-
cessful auction and often varies depending on the item on
which the auction is held. Unlike classical single-unit auctions,
spectrum auctions are multi-unit where bidders bid for a part
of the spectrum band, i.e., the bids are for different amounts
of bandwidth. Also, multiple winners evolve constituting a
winner set. Thus determination of winner set depends heavily
on the auction strategy adopted. In our auction model, the
spectrum broker is the seller who owns the coordinated
access band and service providers are the buyers/bidders. For
designing the auction, we consider three important issues i)
how to maximize the revenue generated from bidders, ii) how
to entice bidders by increasing their probability of winning,
and iii) how to prevent collusion among providers.

B. Formulation of Auction Rules

Recall, the service providers already have some spectrum
that was statically allocated. It is the additional spectrum
that is sought from the CAB. Though the objective of the
spectrum broker is to sell the CAB and earn revenue, it is not
at all intended that only big companies with higher spectrum
demand are given additional spectrum. The goal here is to
increase competition and bring new ideas and services at the
same time. As a result it is necessary to make the small
companies, who also have a demand of spectrum, interested
in taking part in the auction.

The problem described here has a very close connection
to the classical knapsack problem, where the goal is to fill a
sack of finite capacity with several items such that the total
valuation of the items in the sack is maximized. Here, the
sack represents the finite capacity of spectrum in the CAB
that is to be allocated to the WSPs in such a manner that
the revenue generated from these WSPs is maximized. In
this regard, we propose the “Winner Determining Sealed Bid
Knapsack Auction”.

We considerL WSPs (bidders) who compete for a total
spectrumW . All the service providers submit their demands
at the same time in a sealed bid manner. We follow sealed
bid auction strategy, because sealed bid auction has shown to
perform well in all–at–a–time bidding and has a tendency to
prevent collusion [17]. Each service provider has knowledge
about its own bidding quantity and bidding price but do not
have knowledge about other’s quantity and price.

We formulate the auction as follows. We denote the strategy
adopted by service provideri by a tupleqi = {wi, xi} where,
wi denotes the amount of spectrum requested andxi denotes
the corresponding price that the service provider is willing
to pay. If the sum of the bidding quantities do not exceed
the spectrum available,W , then the requested quantities are
allocated. Otherwise, auction is initiated when,

L∑

i=1

wi > W (1)



Our goal is to solve the winner-determination problem in such
a way so that the spectrum broker maximizes revenue by
choosing a bundle of bidders (qi), subject to condition that
the total spectrum allocated does not exceedW , i.e.,

maximize
∑

i

xi such that,
∑

i

wi ≤ W (2)

Note that, a more generic approach would have been a
multiple-choice knapsack formulation with each provider (bid-
der) submitting a complete demand curve, i.e., a vector of
bandwidths requested along with their corresponding prices.
Although it is theoretically possible for the providers to submit
a demand curve , the solution will become computationally
intractable and will also suffer from scalability issues.

C. Bidders’ Strategies

We investigate bidders’ strategies for both first and second
price bidding schemes under knapsack model. In first price
auction, bidder(s) with the winning bid(s) pay their winning
bid(s) while in second price, bidder(s) with the winning bid(s)
do not pay their winning bid but pay the second highest bid.

Let each bidderi submit its demand tupleqi. Then the
optimal allocation of spectrum is done by considering all the
demand tuples. We denote this optimal allocation asM , where
M incorporates all the winning demand tuplesqi and is subject
to condition given in equation 2. Without loss of generality,
we assume bids can take only integer values (as bids in dollar
values are always expressed as integer) and number of bidders
(providers) is typically of the order of10. If the number of
bidders is large, we use the scaling heuristic. Thus, we are able
to solve the winner determination problem through dynamic
programming with reasonably low computation. The aggregate
bid can be obtained by summing all the bids from bidder,

∑

i∈M

xi. (3)

Let us consider a particular bidderj who was allocated
spectrum and thus belongs toM . Then the aggregate bid
generated from the optimal allocationM minus the bid of
bidder j is given by

∑

i6=j,i∈M,j∈M

xi (4)

Now consider that bidderj does not exist and the auction is
among the remainingL−1 bidders. Let the optimal allocation
be denoted byM∗. The aggregate bid generated in this case
is

∑

i 6=j,i∈M∗,j /∈M∗
xi (5)

Therefore, minimum winning bid of bidderj must be at
least greater than

Xj =
∑

i 6=j,i∈M∗j /∈M∗
xi −

∑

i 6=j,i∈Mj∈M

xi (6)

Thus, bidderj’s request is granted ifxj > Xj and not
granted if xj < Xj . If xj = Xj , bidder j is indifferent

between winning and loosing. Note that, the model under
consideration is a non-uniform-price auction andXj is not
generally the same for all bidders.

Though equation (6) gives the winning bid for bidderj, it
is not necessary that bidderj will be able to afford it. There
exists a price threshold (bidder’s reservation price) beyond
which a bidder is simply unwilling to pay.

Bidder’s Reservation Price: Bidder’s reservation price is
defined as the most a bidder would be willing to pay. When
a service provider buys spectrum from the spectrum broker,
the service provider needs to sell that spectrum in form of
services to the end users who pay for these services. The
revenue thus generated helps the provider to pay for the fixed
(static) cost for the statically assigned spectrum and the extra
spectrum that the provider might need from the CAB. If the
total revenue generated from the users isR andRstatic goes
towards the fixed cost, then the difference,Rdynamic, is the
maximum amount that the provider can afford for the extra
spectrum from CAB i.e.,

Rdynamic = R−Rstatic (7)

Note, Rdynamic is not the bidder’s reservation price but is
a prime factor that governs this reservation price.

Lemma 1: In second price knapsack auction, dominant
strategy of the bidder is to bid bidder’s reservation price.

Proof: Let us assumejth bidder has the demand tuple
qj = {wj , xj} and its reservation price for that amount of
spectrum requested berj . Now, as shown above in equation 6,
jth bidder’s request will be granted and consequently belong
to optimal allocationM , only if bid generated byjth bidder is
at leastXj . Then according to the second price bidding policy,
jth bidder will pay the second price which isXj in this case.
Then the payoff obtained byjth bidder is,

Ej = rj −Xj (8)

Through proof by contradiction, we show thatjth bidder’s true
bid is its reservation pricerj .

We assume thatjth bidder does not bid its true evaluation
of the spectrum requested, i.e.,xj 6= rj . Accordingly bidder
j has two options of choosingxj .

Option 1: Bid is less than the reservation price, i.e.,
xj < rj . The values ofxj , rj andXj are such that,
• rj > xj > Xj , then bidderj falls inside the optimal
allocationM and its request is granted. The expected payoff
obtained byjth bidder is still given by:(rj −Xj).
• rj > Xj > xj , then bidderj loses and its request is not
granted. Accordingly, the expected payoff becomes 0.
• Xj > rj > xj , bidderj still loses and the expected payoff
is again 0.

Option 2: Bid is more than the reservation price, i.e.,
xj > rj . The values ofxj , rj andXj are such that,
• xj > rj > Xj , then bidderj falls inside the optimal
allocationM and its request is granted. The expected payoff



obtained byjth bidder is still given by:(rj −Xj).
• xj > Xj > rj , though bidderj wins but the expected payoff
becomes negative in this case. The expected payoff obtained
by jth bidder is given by:(rj −Xj) < 0. Bidder j will not
be interested in this scenario.
• Xj > xj > rj , bidder j loses and the expected payoff is
again 0.

It is evident that if bidderj wins, then the maximum
expected payoff is given byEj = rj − Xj and bidding any
other price (higher or lower) than its reservation pricerj will
not increase payoff. Thus, the dominant strategy of a bidder
in second price bidding under knapsack model is to bid its
reservation price.
Comments:Our result corroborates with the result shown in
other contexts in the economics literature, e.g., in Clarke’s
tax [6]. Thus it is clear that bidders have no option of
manipulating this auction. Note that, we focus on the above
auction model only if the total demand of additional spectrum
exceeds the capacity of CAB, otherwise, auction might not
be the best solution for this problem.

Lemma 2: In first price bidding, reservation price is the
upper bidding threshold.

Proof: Contrary to the Lemma1, in first price bidding,
the expected payoff obtained byjth bidder can be given by,
Ej = rj − xj , as the actual price paid by the bidder is the
same as the bid. Then, to increase the expected payoff, i.e., to
keepEj > 0, xj must be less thanrj .

Again at the same time, to win, bidxj must be greater than
Xj (equation 6). Thus the dominant strategy for the bidder in
first price auction is to bid less than the reservation price.

IV. SERVICE PROVISIONING USINGGAMES

In this section, we consider the most generic abstraction
of “always greedy and profit seeking” model that exists
between WSPs and end-users. The WSPs compete among
themselves to provide service to a common pool of users.
The resource for the WSPs are spectrum chunks that have
been statically allocated and the additional spectrum that they
buy as discussed in section III. Users on the other hand select
service providers depending on the benefit they obtain for the
prices they pay. Let us discuss the conflict that arises between
the WSPs and the users.

A. Conflict model

We consider the model as shown in the lower half of
figure 1, where any user can access any WSP. The users are
the potential buyers who buy services from the WSPs. The
selection of a WSP is done on a dynamic basis i.e., a user
compares the offerings both in terms of QoS and price for
a particular service. Once a service is completed, the user
relinquishes the radio resources. As the prices offered are not
static, the users do not have any information about other users’
strategies i.e., demand for resources or price willingness to
pay. In such an incomplete information scenario, the benefit

of a user depends not only on its own strategy but also on
what others do. Since we assume that every user is selfish, the
problem is modeled as a non–cooperative game.

Service providers, very much like the users, also act in
their self-interest. As a seller of the services, they deter-
mine the price for its services depending on the amount of
spectrum acquired and the price paid. Similar to the non-
cooperative incomplete information game among the users,
the service providers also do not have any information about
other providers’ strategies, such as, price assigned for services,
alloted resource, remaining resource, existing load, etc. Based
on this conflict model, we need to define the decisions that
we need to make. First, let us state the assumptions.
Assumptions: The devices carried by the users have the
capability of connecting to any wireless service providers.
The WSPs are selected on a session by session basis. For
every session, a user chooses one of multiple service providers
that has the capability of providing the resource (bandwidth)
demanded by the application.

B. Decision Model

As a user, the decision problem is to select the best service
provider for the session requested. Now the question arises,
how to select the best service provider or rather what criteria
determines the best. The quality of service perceived by a user
in a network must be considered in this regard. As quality of
service depends on the traffic load and the pricing strategies,
we must therefore perform a cost benefit analysis to find the
best service provider. A natural question that arises in such
settings is the existence of an equilibrium where no user will
find it beneficial to change the strategy unilaterally. This by
definition is known as Nash equilibrium [15].

As a service provider, the decision problem is to advertise
a price for a service without knowing what prices are being
advertised by its competitors. The optimization is to find a
price such that the provider is able to sustain profit in spite
of offering a low price i.e., is there any price threshold to
reach Nash equilibrium? For finding the existence of Nash
equilibrium, we define the preference of the providers and
users – given by their utility functions.

C. Utility Function

An utility function is a mathematical characterization that
represents the benefits and cost incurred. Here, we are defining
the utility functions for both WSP and users.

We considerL service providers that cater to a common
pool ofN users. Let the price per unit of resource advertised
by the service providerj, 1 ≤ j ≤ L, at time t be pj(t).
Let bij(t) be the resource consumed by useri, 1 ≤ i ≤ N ,
served by providerj. We further assume that the total resource
(capacity) of providerj is Cj .

The utility obtained by useri under the providerj can be
given by [22],

uij(t) = aij log(1 + bij(t)) (9)



where, the coefficientaij is a positive parameter that indicates
the relative importance of benefit and acts as a weightage
factor.

Note that, we could have chosen any other form for the
utility that increases withbij(t). But we chose thelog function
because the benefit increases quickly from zero as the total
throughput increases from zero and then increases slowly. This
reflects the intuition that the initial increase in the perceived
throughput is more important to a user. Moreover,log function
is analytically convenient, increasing, strictly concave and
continuously differentiable.

Next, we consider the cost components incurred by user.
The first cost component is the direct cost paid to the provider
for obtainingbij(t) amount of resource. Ifpj(t) is the price per
unit of resource, then the direct cost paid to thejth provider
is given by,

pj(t)bij(t) (10)

This direct cost component decreases useri’s utility. Note
that in expression (10), both price per unit resource and the
resource amount requested are variables.

The second cost component incurred by the user is the
perceived quality of service, one of the manifestations of
which is the queuing delay which again depends on the
resources consumed by the other users. We assume the queuing
process to beM/M/1 at the links. Thus, the delay cost
component can be written as

{
ξ( 1

Cj−
∑Nj

i
bij(t)

) if
∑Nj

i
bij(t) < Cj

∞ if
∑Nj

i
bij(t) ≥ Cj

(11)

where Nj is the number of users currently served by
provider j andξ(·) is a mapping cost function of delay.

Combining all the components obtained in equations (9),
(10), and (11), we get the net utility as

Uij(t) = uij(t)− pj(t)bij(t)− ξ(
1

Cj −
∑Nj

i bij(t)
) (12)

We also obtain the utility as obtained by the service
providers. The utility of service providerj at time t is,

Vj(t) = pj(t)
Nj∑

i

bij(t)−Kj (13)

where,Kj is the cost incurred to providerj for maintaining
network resources. For the sake of simplicity, we assume this
cost to be constant.

D. Price Threshold

Now, we investigate the price constraint from the users’
and providers’ point of view to study the existence of Nash
equilibrium. Consider useri has a certain resource demand
and wants to connect to a provider at timet. All the providers
advertise their price per unit of resource amount and the exist-
ing load. As useri wants to maximize his net utility (potential
benefit minus cost incurred), he computes the resource vector
that would maximize utilities from all the providers and the
corresponding maximized utility vector.

User i would then connect to providerj if Uij(t)
gives the maximum value in the maximized utility vec-
tor, {Ui1(t), Ui2(t), · · · , UiL(t)}, and bij(t) is the re-
quested resource amount from the optimal resource vector,
{bi1(t), bi2(t), · · · , biL(t)}.

Let us investigate if there exists any optimal resource
amount for the users and any pricing bound from the providers
that will maximize the users net utility. To do so we need
to find whether the net utility given in equation (12) can be
maximized with respect to the resource amount. If so, then
a unique maximization point exists forUij(t) with respect to
bij(t). Differentiating equation (12) with respect tobij(t),

U ′
ij(t) =

aij

1 + bij(t)
− pj(t)− ξ′(

1

Cj −
∑Nj

i bij(t)
) (14)

Similarly, the second derivative is

U ′′
ij(t) = − aij

(1 + bij(t))2
− ξ′′(

1

Cj −
∑Nj

i bij(t)
) (15)

If we assume delay and congestion component, such that,
ξ′′( 1

Cj−
∑Nj

i
bij(t)

) > 0, then, U ′′
ij(t) < 0 and it is clear

that Uij(t) is strictly concave in the region bounded by∑Nj

i bij(t) = Cj ; and Uij(t) → −∞ as
∑Nj

i bij(t) → Cj .
Moreover, it can be inferred from equation (15) that as
U ′′

ij(t) < 0, Uij(t) contains a unique maximization point.
Thus, equating equation (14) to 0, and solving forbij(t) gives
the optimal amount of resources needed by the users for a
certain pricepj(t) and this resource amount will maximize
the utility of the user. From the reverse point of view, it is
also clear from the above equation (14) that there exists a
maximum threshold for the pricepj(t).

As the users are homogeneous, to maximize users’ utility,
first derivative of all the users can be equated to zero,

U ′
1j(t) = U ′

2j(t) = · · · = U ′
Njj(t) = 0 (16)

Recall,Nj is the number of users currently served by provider
j. Thus equation (16) reduces to,

a1j

1 + b1j(t)
=

a2j

1 + b2j(t)
= · · · = aNjj

1 + bNjj(t)
(17)

If 1+ bij(t) = mij(t) and with the help of identity, we get,

aij

mij(t)
=

∑Nj

i aij∑Nj

i mij(t)
(18)

For notational simplicity, we representaIj =
∑Nj

i aij and
mIj(t) =

∑Nj

i mij(t). Thus, equation (18) can be written as

aij

mij(t)
=

aIj

mIj(t)
(19)

Putting the above form into equation (14), we get

U ′
ij(t) =

aIj

mIj(t)
− pj(t)− ξ′(

1
Cj + Nj −mIj(t)

) (20)

Note U ′
ij(t) is strictly decreasing with the values ofmIj(t)

lying in the interval(Cj , Cj + Nj). Then for achieving the



Nash equilibrium by the providers, the pricing constraintpj(t)
is upper bounded by,

aIj

mIj(t)
− ξ′(

1
Cj + Nj −mIj(t)

) (21)

This pricing upper bound helps the provider to reach the
Nash equilibrium. If all of the other providers and users
keep their strategies unchanged, and a provider changes its
strategy unilaterally and decides not to maintain its pricing
upper bound, then that provider will not be able to maximize
its users’ utility and thus users will not connect to this provider
decreasing provider’s revenue.

V. ESTIMATING THE DEMAND FOR BANDWIDTH

The amount of extra (dynamic) spectrum that a provider
needs, depends on the demand for services by the users it
supports. Therefore it is essential to estimate the resources
consumed by the users and the price that is recovered from
them. These estimates will help a provider determine the tuple
qi = {wi, xi}.

Our objective is to maximize provider’s net utility,Vj(t)
subject to the constraint given by equation (21). Replacing∑Nj

i bij(t) by mIj(t)−Nj , we get,

Vj(t)=
( aIj

mIj(t)
− ξ′(

1
Cj +Nj −mIj(t)

)
)
(mIj(t)−Nj)

− Kj (22)

Differentiating equation (22) with respect tomIj(t), we get,

V ′
j (t) =

( aIj

mIj(t)
− ξ′(

1
Cj + Nj −mIj(t)

)
)

(23)

+
(
− aIj

(mIj(t))2
− ξ′′(

1
Cj + Nj −mIj(t)

)
)
(mIj(t)−Nj)

Differentiating again, and studying the expression forV ′′
j (t),

we get,V ′′
j (t) < 0; which implies that utility for the providers

has a maximization point obeying the pricing bound.
For finding the maxima, we equate equation (23) to 0, which

gives the optimal value ofmIj(t). Equation (23) is not in
closed form because the exact nature ofξ(·) is not known. We
assume the solution of the above equation to bemIj(opt)(t).
Of course, for a givenξ(·), the value ofmIj(opt)(t) can always
be obtained.

The optimal price that will maximize providerj’s utility
can be obtained by substitutingmIj(opt)(t) in equation (21).
Thus, we get the optimal price as

pj(opt)(t) =
aIj

mIj(opt)(t)
− ξ′(

1
Cj + Nj −mIj(opt)(t)

) (24)

Note that,pj(opt)(t) is clearly dependent onNj .
To have a better insight into the analysis, we assume a

simple closed form ofξ( 1
Cj+Nj−mIj(t)

) as 1
(Cj+Nj−mIj(t))α ,

where α is a power coefficient in the delay and congestion
component. While taking an exact form ofξ(·), we made sure
that it satisfies the constraint of its1st,2nd and3rd derivatives

to be positive. Any other form ofξ(·) would also suffice if
the derivatives are positive. Rewriting equation (23), we get

V ′
j (t) =

( aIj

mIj(t)
− α

(Cj + Nj −mIj(t))α+1

)
(25)

+
(
− aIj

(mIj(t))2
− α(α + 1)

(Cj +Nj−mIj(t))α+2

)
(mIj(t)−Nj)

Equating equation (25) to0, we can find the solution ofmIj(t)
for finding the maxima. It can be seen that the equation is not
in its closed form. Thus to solve the equation, we consider a
special case.
Special case:We assumeα = 1 and Nj = Cj and equate
equation (25) to0 to obtain

(2Cj −mIj(t)) 3
√

aIjCj = mIj(t) (26)

Solving the above equation for optimalmIj(t), we get,
mIj(opt)(t) = 2Cjθ

1+θ , where,θ = 3
√

aIjCj .
Using the optimal value ofmIj(t), we get the optimal value

of pj(t) as

pj(opt)(t) =
aIj

2Cj

(
1 +

1
θ

)
−

(1 + θ

2Cj

)2

(27)

Thus, we see that the providers can achieve Nash equilibrium
under the given pricing constraint and at the same time they
can maximize their utility if the price is set as given by
equation (27). Next, we use this pricing strategy as an incentive
for the providers to upgrade their resources and users to
improve their utility.

A. Pricing as an Incentive

With the strategies to determine the prices and the expected
profit known, let us investigate if there is any incentive for the
providers to upgrade their radio/network resources, and if this
additional resource provides any incentive to the users too.

SubstitutingmIj(opt)(t) in equation (19), we get

mij(opt)(t) =
aij

aIj

( 2Cjθ

1 + θ

)
(28)

We know,mij(t) = 1+bij(t); the optimal resource consumed
by useri under providerj is given by

bij(opt)(t) =
aij

aIj

( 2Cj

1 + 1
θ

)
− 1 (29)

Thus, the optimal amount of resources for a provider to be
demanded from a spectrum broker in the equilibrium can be
given by

∑
i bij(opt)(t). Moreover, the utility of providerj can

be written aspj(opt)(t)
∑

i bij(opt)(t).
Note, by using a proper transformation function (which is

beyond the scope of this research), the total utility of provider
j can be converted to a dollar value denoted byR (refer
equation 7) – the total revenue obtained by providerj.

R = T

(
pj(opt)(t)

∑

i

bij(opt)(t)−Kj

)
(30)

whereT (·) is some transformation function.
Thus, provider’s reservation price is governed by

T

(
pj(opt)(t)

∑
i bij(opt)(t)−Kj

)
−Rstatic.



VI. N UMERICAL RESULTS AND INTERPRETATION

We present our results in this section. In section VI-A,
we simulate our auction model and show how the knapsack
auction outperforms the classical highest bid auction models.
Later we model the interaction between WSPs and users.

A. Spectrum Auctioning

The main factors that we consider for demonstrating the
performance of the proposed knapsack auction are: revenue
generated by spectrum broker, total spectrum usage, and
probability of winning for bidders. For the simulation model
we follow second price sealed-bid mechanism. We could have
chosen the first price bidding policy; the only reason for
choosing second price policy is that it has more properties
than first price in terms of uncertainty [20]. We assume that
all the bidders are present for all the auction rounds; bidders
take feedback from previous rounds and generate the bid tuple
for next round. The bid tupleqi generated by bidderi consists
of i) amount of spectrum requested,wi and ii) the price the
bidder is willing to pay,xi.

For simulation purpose, the parameters considered are as
follows. Total amount of spectrum in CAB is assumed as100
units, whereas min. and max. amount of spectrum requested
by each bidder is11 and 50 units respectively. Min. bid per
unit of spectrum is considered as25 unit.
Revenue and spectrum usage:Figures 2 and 3 compare
revenue and spectrum usage for two strategies for each auction
round. The number of bidders considered is10. Note that, both
revenue and usage are low in the beginning and subsequently
increases with rounds. In the initial rounds, bidders are dubious
and make low bids. With increase in rounds, potential bidders
emerged as expected and raised the generated revenue. We
observe that the proposed auction generates 10-15% more
revenue compared to the classical model and also reaches
steady state faster.
Bidder participation: In figures 4 and 5, we look at our
auction model from the bidders’ perspective. Higher revenue
requires high participation in number of bidders. However,
classical auctions always favor bidders with high spectrum re-
quest and/or high bid, thus discouraging low potential bidders
and giving the higher potential bidders a chance to control
the auction. In order to evaluate the bidder participation, we
consider two cases: a) bidder with the lowest spectrum request
and b) bidder with the lowest bid. For these two cases, we
compare the two strategies in terms of probabilities to win
a bid. We observe that the proposed auction strategy has a
significantly high probability of winning compared to classical
strategy. Note that probability of winning in classical strategy
almost reaches zero with increase in bidders.
Collusion prevention: The occurrence of collusion must be
prevented in any good auction so that a subset of bidders
can not control the auction that might decrease the spectrum
broker’s revenue. We consider two cases: i) when bidders
collude and ii) when bidders do not collude. In our simulation
model, we assume bidders randomly collude in pair in all
possible combinations with others.

In figure 6, we show the average revenue generated by
spectrum broker with increase in number of bidders both in
presence and absence of collusion. Though at the beginning
with less number of bidders, presence of collusion reduces
the average revenue slightly, but with increase in number
of bidders the effect due to collusion decreases. Thus with
increase in number of bidders, i.e., with increase in (perfect)
competition, revenue generated even in the presence of collu-
sion reaches almost the same value as that of without collusion.
Figure 7 presents the usage of spectrum in the presence and
absence of collusion. The most interesting result from bidders’
perspective is shown in figure 8. When the number of bidders
is low (less than or equal to4 in our case) collusion provides
better probability of winning but as the number of bidders
increases, probability of winning with the help of collusion
decreases, discouraging bidders to collude.
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Fig. 2. Revenue Maximization with auction rounds (with 10 bidders)
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Fig. 3. Usage Maximization with auction rounds (with 10 bidders)
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Fig. 4. Probability of winning with lowest spectrum request
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Fig. 5. Probability of winning with lowest value bid
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Fig. 6. Avg Revenue with and without collusion
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Fig. 7. Avg Usage with and without collusion
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Fig. 8. Avg probability of winning with and without collusion

B. Pricing: Numerical results

Here, we provide some insights on how the pricing strate-
gies proposed for WSP and end users interaction work as

incentives for both. We consider two cases – fixed and
increasing number of users.
• Fixed number of users:We keep the number of users fixed
with the total resource of the provider increasing. Recapitulate
from equations (27) and (29) that increasing resource implies
increasingCj and fixed number of users implies a fixed value
of aIj . We consider all users have equal weightage factor
aij = 1.5 and the value ofCj varies from1 to 100 units. These
values used for obtaining the numerical results are arbitrary
and are merely for the sake of demonstration. Any other values
of aij andCj can be used as long as they satisfy the constraint
that the price per unit resource is positive.

Figure 9 shows how the provider must decrease the price per
unit of resource if the total amount of resources increases with
the same user base. This decrease in unit price is necessary if
resource utilization is to be maximized which also serves as
an incentive for the users.

The total profit of the provider is presented in figure 10.
With the number of users fixed, we observe that the total
profit of the provider increases till a certain resource and then
decreases. For a fixed number of users, this result allows us to
estimate the amount of resource that the provider must have
such that its profit is maximized.
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Fig. 9. Price per unit of resource vs. resource (with number of users fixed)
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Fig. 10. Total profit of a provider vs. resource (with number of users fixed)

• Increasing number of users:The number of users (pop-
ulation base) is increasing in this case which is typical of
any market. We start with 1 user under a provider. For fair
comparison with the previous case (i.e., with fixed number of
users), we increase resources from 1 to 100 units. Note that,



aIj is no longer fixed and increases with increasing number
of users. For this simulation, we assume that the increase in
number of users is such that the ratio ofaIj andCj is fixed.

In figure 11, the price per unit of resource is presented. As
the initial number of users is very low, increasing resource
necessitates an initial increase in price per unit of resource.
But as the number of users increase, it is imperative that price
per unit resource decreases providing incentive for the users.

In figure 12, we present the total profit of the provider.
Unlike the previous case (figure 10), we see that with users
increasing proportionally with resources, the total profit is
always increasing which presents a better incentive for the
providers than the case with fixed number of users. Note, the
linear increase in profit is just due to the assumption: the ratio
between the users and resources is fixed.
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Fig. 11. Price per unit of resource vs. resource (with increasing number of
users such that the ratio ofaIj andCj is fixed)
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users such that the ratio ofaIj andCj is fixed)

VII. C ONCLUSIONS

Dynamic spectrum allocation coupled with fine granularity
switching of services by end–users will engender a flexible
and competitive environment for trading wireless services. In
this research, we provide a framework based on auction and
game theories that capture the interaction among spectrum
broker, service providers, and end–users in a multi–provider
setting. We propose a winner determining sealed bid knapsack
auction that dynamically allocates spectrum from CAB and at
the same time maximizes revenue generated, entices WSPs by
increasing their probability of winning, and prevents collusion.
Utility functions are formed for WSPs and users modeling
their conflicts and existence of Nash equilibrium is shown

under certain threshold conditions. We also show how proper
pricing can provide incentives to providers to upgrade their
resources and users to opt for better services.
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