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Abstract—In the future, we can expect to see more dynamic compete among themselves to acquire a large portion of the
service offerings and profiles, as users move from long-term ser- spectrum and also attract as many users as possible. Though
vice provider agreements to more opportunistic service models. tha resource allocation strategies of competing WSPs have

Moreover, when the radio spectrum is itself traded in a market- . . . .
based scenario, wireless service providers (WSPs) will likely been investigated in [11], to the best of our knowledge, this

require new strategies to deploy services, define service profiles,fesearch is the first attempt to analyze the economic aspects
and price them. Currently, there is little understanding on how that arise due to the interactions between spectrum owner,
such a dynamic trading system will operate so as to make the wireless service providers, and users.

system feasible under economic terms. From an economic point

of view, we analyze two main components of this overall trading A, Dynamic spectrum allocation

system: i) spectrum allocation to WSPs and ii) interaction of end . .
users with the WSPs. In most countries, chunks of spectrum are statically allo-

For this two-tier trading system, we present a winner deter- cated to the WSPs [8]. Spectrum usage being both space and
mining sealed-bid knapsack auction mechanism that dynamically time dependent, a static allocation often leads to low spectrum
Z"gcs;?igp‘?%wmstfaige V\tl)sazes dbgrs]edagq”etthhee':)b“ﬁ- (\:’;’etmgﬁﬁze utilization as reported in [26]. Static allocation also results in
con¥|ict of irﬁteres?t betwegeyn WSPs an%l end userrg, bothpof whom fragmentation of the spectrum crea_ting “white _space” (unus_ed
try to maximize their respective net utilities. We show that even in bands) that cannot be allocated to licensed/unlicensed services.
such a greedy and non-cooperative behavioral game model, itisin  In order to break away from the inflexibility and inef-
the best interest of the WSPs to adhere to a price threshold which ficiencies of static allocation, a new concept Bfnamic
is a consequence of a price equilibrium in an oligopoly situation. Spectrum Allocatior(DSA) is recently being investigated by

Through simulation results, we show that the proposed auction network and radio engineers. policy makers. and economists
entices the WSPs to participate in the auction, makes optimal g , policy d :

use of the common spectrum pool, and avoids collusion among IN DSA, spectrum will be allocated dynamically depending
WSPs. Moreover, numerical results demonstrate how pricing can on need of the service providers which in turn depends on
be used as an effective tool for providing incentives to the WSPs end users’ demands in a time and space variant manner [3].
to upgrade their network resources and offer better services. Emerging wireless technologies such as cognitive radios [13]
will make DSA a reality. In DSA, the spectrum owner will
create a common pool @penspectrum. Though this common
The presence of multiple wireless service providers gpectrum can be created by taking back all the previously
any geographic region together with the freedom of usef®atically) allocated spectrum chunks, it is not an option
in switching wireless service providers (WSPs) is forcingecause of monies already invested. However, parts of the
a competitive environment where each WSP is trying tgpectrum band that are not allocated or are no longer used
maximize its profit. Essentially, a wireless service provideran be made open to the WSPs. These parts of the band,
buys spectrum from the spectrum owner (for example, Fedetlaat are open to all are known as the coordinated access band
Communications Commission in the United States of AmefCAB) [4].
ica) with a certain price and then sells the spectrum to the end ) ) )
users in the form of services (bandwidth). In such a scenarf, Economic paradigm shift
the goal of each service provider is twofold: get a large shareCurrently, each provider gets a chunk of the spectrum
of users and the necessary spectrum to fulfill the demandsamid has a unique user pool that they cater to. In future,
these users. As both the number of end users and capacity gbaradigm shift as depicted in figure 1, is very likely to
spectrum band are finite, this gives birth to an interrelated twoecur where each provider will get a part of the spectrum
tier competitive behavior, where wireless service providefom the common spectrum pool as and when they need
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through aspectrum broker It is also anticipated that the The rest of the paper is organized as follows. In section II,
concept ofservice brokertechnically known as Mobile Virtual we discuss the relatively small body of work that relates to this
Network Operators (MVNO) [24], will evolve that will act research. We describe the proposed auction method in section
as an interface between the providers and the users [19]. The game models and equilibria conditions are presented in
The users will be able to select their service provider as pgzction IV. The demand for bandwidth is estimated in section
their requirements through the service broker. In light of these The simulation model and results are presented in section
new developments, it is important to investigate the economit. Conclusions are drawn in the last section.

issues that has a profound impact on the service quality and
the prices paid by the end users.

The most important factors that the WSPs need to considefAuction theory and game theory have been used to ana-
are the amount of spectrum they need and tharice are lyze problems with conflicting objectives among interacting
they willing to pay. In effect, estimation of théemand for decision—-makers. These theories have been extensively used
bandwidth and expected revenusvill drive the provider's in various industries including the competitive energy market,
strategies. Service pricing by the providers, in turn, will affedirlines industry, and Internet services. They have been proved
the demand for the services by the users, thus resulting iioabe very powerful tools to deal with problems in networking
cyclic dependency in a typical supply-demand scenario. A®d communications from an economic point of view. This
a result, the relationship between spectrum owner and WPbecause the service quality that each user receives in a
has a strong correlation with the relationship between WSp@mpetitive environment is often affected by the action of
and end-users and must be analyzed together unlike any owigder users who also try to contend for the same pool of
industry service model. resources. A broad overview of game theory and its application
to different problems in networking and communications can
be found in [22] and the references therein. Network services,
including pricing issues, have been studied with the help of
, ; “ auctions in [9], [18].

! Auction theory has been used to understand markets, es-
L e / ! pecially to model auction participants who bid to win and
maximize profit [16]. A large number of Internet auction
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R s Postrs) T |ponge mie': - sites have been set up to process both consumer—oriented and
Se(m,g business—oriented transactions. Currently, most auction sites
7\ (e.q., eBay [25]) support a pasic pidding strat_eg)_/ throug_h a
T - A 5 proxy service for a single-unit auction where bidding contin-
o ) et ues till a winner evolves. In a single unit auction, Vickrey

Current Scenario Future Scenario proved that “English” and “Dutch” type auctions yield the
same expected revenue under the assumptions of risk neutral
participants and privately known value drawn from a common
distribution [20]. Vickrey’s result is embodied in the “Revenue
In this paper, we devise a “winner determining sealed blgquivalence Theorem” (RET) [10]. However, with emerging
knapsack auction” mechanism for dynamic allocation of thmarkets like electricity and spectrum band, single unit auctions
spectrum from the coordinated access band (CAB). The WSde falling short to address the issues where bidders bid
bid to acquireextra chunks of spectrum in addition to thefor multi-units and multiple winners emerge [1]. As bidders
statically allocated band. We map the winner determinatimompete for a part of the available resource and are willing to
problem to the knapsack problem and use a sealed-bid mephay a price forthat part only, this auction model needed must
anism to find the optimal allocation. Through a game-theoreti® more generalized and is being currently investigated [2].
model, the conflicting objectives that are inherent in the WSP-As far as game theory is concerned, there is an emerging
user interactions are captured. We deviate from the notiontwddy of work that deal with decision making in a multi—
per-service static prices [12] and allow the providers to sptovider setting. In [5], a market in the form of a ‘bazaar’
the prices dynamically in order to maximize their profit anwas introduced where infrastructure—based wide area wireless
minimize resource wastage. Such a market mechanism is meeevices are traded in a flexible manner and at any time scale.
flexible and realistic, as there does not exist any centraliz&étle mobile bazaar architecture allows fine—grained service
authority to determine the price of a service. We prove tlierough cooperative interactions based on user needs. The
existence of an price (Nash) equilibrium, where no providgroblem of dynamically selecting ISPs for forwarding and
finds it beneficial to change its price unilaterally [15]. Weeceiving packets has been studied in [21]. A multi-homed
also answer the following questions: i) how the spectrumser, i.e., user with access to multiple ISPs, has the freedom
is allocated from the coordinated access band (CAB) to thechoose a subset of ISPs from the available ones. Zemlianov
service providers, ii) how service providers determine the prie¢ al. assumed the existence of two orthogonal technologies
of their services, and iii) how are the above two inter-relatethat were overlaid [23]. In particular, cellular and WLANs

Fig. 1. The paradigm shift



are considered where users are vertically transferred from dbAB is equal. Adding frequency constraint to the spectrum
network to another based on the load of each network. In [1&]Jocation problem will be rather focus of our future work.
service admission con't.rollwas done based on the outcomeAc_>fAuction Issues

a game and Nash equilibrium was reached using pure strategy. ) L

Users were offered differentiated services based on the pricéb‘ good aL_‘Ctmn design is u_nportant for. any type O_f suc-
they paid and the service degradation they could toleraféj.s,‘SfUI auctlon ar]d often varies dePe”d'_”g on t_he |tem on
However, dynamic pricing was not explored in [11]. In [14]WhICh the auction is held. Unlike classical single-unit auctions,
authors study the economic interests of a wireless access pSctrum auctions are multi-unit where bidders bid for a part
owner and his paying client, and model their interaction & the spectrum band, i.e., the bids are for different amounts
a dynamic game. In [7], authors presented a non—cooperat‘Rf_ebandW'dth' Also, mul_t|plg winners evolve constituting a
game for pricing Internet services but concluded with an unfaifinner set. Thus determination of winner set depends heavily

Nash equilibrium where future upgradation of the networkd! the auction strategy adopted. In our auction model, the
were discouraged. spectrum broker is the seller who owns the coordinated

access band and service providers are the buyers/bidders. For
I1l. SPECTRUMALLOCATION THROUGH AUCTIONS designing the auction, we consider three important issues i)
In this section, we analyze a part of the logical modd|oW to maximize the revenue generated from bidders, ii) how

presented in figure 1, i.e., the interaction between the spectrifiventice bidders by increasing their probability of winning,
broker and the service providers. Spectrum allocation from tA8d iii) how to prevent collusion among providers.
coordinated access band (CAB) can be done in two ways: Formulation of Auction Rules

asynchronous or synchronous allocation. In asynchronouszecall, the service providers already have some spectrum
method, whenever a service provider has a need for spectrymy \as statically allocated. It is the additional spectrum
it makes a request tp the spectrum broker. If available, they: is sought from the CAB. Though the objective of the
spectrum broker assigns a chunk of spectrum for the leaggcirum broker is to sell the CAB and earn revenue, it is not
period, upon expiry of which, the assigned spectrum is takgh g intended that only big companies with higher spectrum
back. On the other hand in synchronous allocation, spectr§@mand are given additional spectrum. The goal here is to
allocations (and de-allocations) are done in & synchronoygease competition and bring new ideas and services at the
manner i.e., providers make requests synchronously. The leasge time. As a result it is necessary to make the small
periods can be assumed as discrete unit short span of imerVé’(lﬁnpanies, who also have a demand of spectrum, interested
Here in this work, we focus on the synchronous allocation.,, taking part in the auction.

Similarly, pricing can be done in two ways depending on The problem described here has a very close connection
the total demand of spectrum from the service providers. If thg ihe classical knapsack problem, where the goal is to fill a
total demand of spectrumioes noexceed the spectrum avail-sack of finite capacity with several items such that the total
able in CAB, then any of the following two pricing models caRajyation of the items in the sack is maximized. Here, the
be adopted. 1Service provider dominant strategproviders gsack represents the finite capacity of spectrum in the CAB
advertise the price they are willing to pay.Spectrum broker that is to be allocated to the WSPs in such a manner that
dominant strategyspectrum broker advertises a (unit) pricghe revenue generated from these WSPs is maximized. In
and service providers respond by deciding on the amountffs regard, we propose the “Winner Determining Sealed Bid
spectrum they can acquire. Knapsack Auction”.

On the other hand, if the total demand of spectrexneeds  \we consider. WSPs (bidders) who compete for a total
the total spectrum available in the CAB (which will be vengpectrumiv. All the service providers submit their demands
often the case and is thus the focus of our research), th@nthe same time in a sealed bid manner. We follow sealed
one of the strategies for the spectrum broker is to put Wiy auction strategy, because sealed bid auction has shown to
the spectrum for bids and decide on the allocation based §&form well in all-at—a—time bidding and has a tendency to
the bids i.e., to adopt an auction model. The auction fefevent collusion [17]. Each service provider has knowledge
spectrum can be conducted on a periodic basis and omut its own bidding quantity and bidding price but do not
small time granularity so that wireless service providers wijaye knowledge about other’'s quantity and price.
bid for additional spectrum from CAB synchronously as this we formulate the auction as follows. We denote the strategy
would allow the spectrum broker to compare all the requesigopted by service providérby a tupleg; = {w;, z;} where,
to maximize the revenue. The aSSUmption in this model is th_@zt denotes the amount of Spectrum requestedmrﬁbnotes
service providers generates spectrum requests periodicallyt-gt corresponding price that the service provider is willing
the beginning of each interval. to pay. If the sum of the bidding quantities do not exceed

Moreover, in this WOfk, we focus on the additional Spectrur{(he spectrum ava”ab]d/,[/’ then the requested quantities are
from CAB with regard to the bandwidth and not with regar@jiocated. Otherwise, auction is initiated when,
to the frequency. We assume that total spectrum available in I
CAB is homogeneous and thus no band is superior or inferior Zwl S W 1)
than any other band and thus demand for any band from the —



Our goal is to solve the winner-determination problem in sudfetween winning and loosing. Note that, the model under
a way so that the spectrum broker maximizes revenue bgnsideration is a non-uniform-price auction aig is not
choosing a bundle of bidderg;}, subject to condition that generally the same for all bidders.
the total spectrum allocated does not exc&édi.e., Though equation (6) gives the winning bid for bidderit
o is not necessary that biddgrwill be able to afford it. There
m“mmwezxi such that, Zwi =W @) exists a price threshold (bidder’s reservation price) beyond
¢ ¢ which a bidder is simply unwilling to pay.

Note that, a more generic approach would have been a
multiple-choice knapsack formulation with each provider (bidsjdder's Reservation Price: Bidders reservation price is
der) submitting a complete demand curve, i.e., a vector @éfined as the most a bidder would be willing to pay. When
bandwidths requested along with their corresponding pric@sservice provider buys spectrum from the spectrum broker,
Although itis theoretically possible for the providers to submihe service provider needs to sell that spectrum in form of
a demand curve , the solution will become computationalleryices to the end users who pay for these services. The
intractable and will also suffer from scalability issues. revenue thus generated helps the provider to pay for the fixed
C. Bidders’ Strategies (static) cost for the stat_ically a_lssigned spectrum and the extra
ectrum that the provider might need from the CAB. If the

. . . , . , S
We investigate bidders’ strategies for both first and secop(ﬁal revenue generated from the userstigind R.;uzi. gO€S

price bidding schemes under knapsack model. In first prif&vards the fixed cost, then the differende, s the
’ ynamaics

auction, bidder(s) with the winning bid(s) pay their winnin aximum amount that the .
: o . . ) - . provider can afford for the extra
bid(s) while in second price, bidder(s) with the winning b'd(;?pectrum from CAB i.e.,

do not pay their winning bid but pay the second highest bi

Let each bidderi submit its demand tuple;. Then the Raynamic = R — Rstatic 7
optimal allocation of spectrum is done by considering all the
demand tuples. We denote this optimal allocatiodBswhere
M incorporates all the winning demand tuplg®nd is subject

to condition given in equation 2. Without loss of generality,emma 1: In second price knapsack auction, dominant

we assume bids can take only |n.teger values (as bids in QO ‘?lrategy of the bidder is to bid bidder’s reservation price.
values are always expressed as integer) and number of bidders

(providers) is typically of the order of0. If the number of
bidders is Iarge_,we use the _sca!lng heuristic. Thus, we are able_ {w;,z;} and its reservation price for that amount of
to solve the winner determination problem through dynam

programming with reasonably low computation. The aggrega ectrum requested lg. Now, as shown above in equation 6,
bid can be obtained by summing all the bids from bidder Jth bidder's request will be granted and consequently belong

' to optimal allocationM, only if bid generated byth bidder is

Note, Raynamic 1S NOt the bidder’s reservation price but is
a prime factor that governs this reservation price.

Proof: Let us assumegth bidder has the demand tuple

Z x;. (3) atleastX;. Then according to the second price bidding policy,
ieM jth bidder will pay the second price which J§; in this case.
Let us consider a particular biddgrwho was allocated 1hen the payoff obtained byth bidder is,
spectrum and thus belongs . Then the aggregate bid Ej=r;—X; (8)

generated from the optimal allocatiald minus the bid of

bidder j is given by Through proof by contradiction, we show thil bidder’s true

bid is its reservation price;.
> owm (4)  We assume thafth bidder does not bid its true evaluation
i#j €M, jEM of the spectrum requested, i.e,; # r;. Accordingly bidder

Now consider that biddef does not exist and the auction is/ has two options of choosing;. _ o
among the remaining, — 1 bidders. Let the optimal allocation Option 1: Bid is less than the reservation price, i.e.,

be denoted byl/*. The aggregate bid generated in this casei < 7;- The values oft;, r; and X; are such that,
is e r; > x; > X,, then bidder; falls inside the optimal

allocation M and its request is granted. The expected payoff
Z Li (5)  obtained byjth bidder is still given by(r; — X).
i#gieM jEM e 7; > X; > z;, then bidder; loses and its request is not
Therefore, minimum winning bid of biddef must be at granted. Accordingly, the expected payoff becomes 0.
least greater than e X; >r; > x;, bidderj still loses and the expected payoff
is again 0.
X = Z Ti = Z Ti (6)  option 2: Bid is more than the reservation price, i.e.,
FIAEM M i#gieMieM z; > r;. The values ofr;, r; and X; are such that,
Thus, bidder;j’s request is granted ik; > X; and not e z; > r; > Xj;, then bidder; falls inside the optimal
granted ifz; < X,. If ; = X, bidder j is indifferent allocationM and its request is granted. The expected payoff



obtained byjth bidder is still given by:(r; — X}). of a user depends not only on its own strategy but also on
e z; > X, > r;, though biddey wins but the expected payoff what others do. Since we assume that every user is selfish, the
becomes negative in this case. The expected payoff obtaipedblem is modeled as a non—cooperative game.

by jth bidder is given by(r; — X,) < 0. Bidder j will not Service providers, very much like the users, also act in

be interested in this scenario. their self-interest. As a seller of the services, they deter-
e X; > x; > rj;, bidder j loses and the expected payoff iamine the price for its services depending on the amount of
again 0. spectrum acquired and the price paid. Similar to the non-

It is evident that if bidderj wins, then the maximum cooperative incomplete information game among the users,
expected payoff is given by; = r; — X; and bidding any the service providers also do not have any information about
other price (higher or lower) than its reservation prigewill  other providers’ strategies, such as, price assigned for services,
not increase payoff. Thus, the dominant strategy of a biddalioted resource, remaining resource, existing load, etc. Based
in second price bidding under knapsack model is to bid its1 this conflict model, we need to define the decisions that
reservation price. B we need to make. First, let us state the assumptions.
CommentsOur result corroborates with the result shown imssumptions: The devices carried by the users have the
other contexts in the economics literature, e.g., in Clarkelapability of connecting to any wireless service providers.
tax [6]. Thus it is clear that bidders have no option ofhe WSPs are selected on a session by session basis. For
manipulating this auction. Note that, we focus on the aboe&ery session, a user chooses one of multiple service providers
auction model only if the total demand of additional spectrumhat has the capability of providing the resource (bandwidth)
exceeds the capacity of CAB, otherwise, auction might ndemanded by the application.
be the best solution for this problem.

B. Decision Model
Lemma 2: In first price bidding, reservation price is the

upper bidding threshold. As a user, the decision problem is to select the best service

provider for the session requested. Now the question arises,
Proof: Contrary to the Lemmd, in first price bidding, how to _select the best service prowder_or rather_ what criteria

. ) , : determines the best. The quality of service perceived by a user
the expected payoff obtained bh bidder can be given by, in a network must be considered in this regard. As quality of
E; = r; — x;, as the actual price paid by the bidder is the gard. As quaity

same as the bid. Then, to increase the expected payoff, i.e.? pvice depends on the traffic load and the pricing strategies,

keepE, > 0, z; MUSt be less than best Senvice provder. A natura Gueston hat e n Such
Again at the same time, to win, big; must be greater than P : 9

X, (equation 6). Thus the dominant strategy for the bidder fnettw_]gs 'S the_ existence of an equilibrium V\_/here no user wil
i . A . . . Ind it beneficial to change the strategy unilaterally. This by
first price auction is to bid less than the reservation prime. T o

definition is known as Nash equilibrium [15].

IV. SERVICE PROVISIONING USING GAMES As a service provider, the decision problem is to advertise
8nprice for a service without knowing what prices are being
gdvertised by its competitors. The optimization is to find a
ijce such that the provider is able to sustain profit in spite
ffering a low price i.e., is there any price threshold to
ch Nash equilibrium? For finding the existence of Nash
ilibrium, we define the preference of the providers and
— given by their utility functions.

In this section, we consider the most generic abstracti
of “always greedy and profit seeking” model that exist
between WSPs and end-users. The WSPs compete amB
themselves to provide service to a common pool of users.
The resource for the WSPs are spectrum chunks that hag8
been statically allocated and the additional spectrum that the
buy as discussed in section Ill. Users on the other hand seldet™
service providers depending on the benefit they obtain for the
prices they pay. Let us discuss the conflict that arises betwe(t:‘:‘n
the WSPs and the users. An utility function is a mathematical characterization that
. represents the benefits and cost incurred. Here, we are defining
A. Conflict model the utility functions for both WSP and users.

We consider the model as shown in the lower half of We considerL service providers that cater to a common
figure 1, where any user can access any WSP. The usersgél of A" users. Let the price per unit of resource advertised
the potential buyers who buy services from the WSPs. Thg the service providej, 1 < j < L, at timet¢ be p;(t).
selection of a WSP is done on a dynamic basis i.e., a use bi;(t) be the resource consumed by uset < i < N,
compares the offerings both in terms of QoS and price fgerved by providej. We further assume that the total resource
a particular service. Once a service is completed, the usge#pacity) of provider; is Cj.
relinquishes the radio resources. As the prices offered are nofhe utility obtained by usei under the providey can be
static, the users do not have any information about other usejfen by [22],
strategies i.e., demand for resources or price willingness to
pay. In such an incomplete information scenario, the benefit u;5(t) = asjlog(1 + bi;(t)) 9)

Utility Function



where, the coefficient;; is a positive parameter that indicates User ¢ would then connect to providey if U;;(t)
the relative importance of benefit and acts as a weightagees the maximum value in the maximized utility vec-
factor. tor, {U;i(t),Uia(t),---,Ui(t)}, and b;;(t) is the re-
Note that, we could have chosen any other form for thiested resource amount from the optimal resource vector,
utility that increases witlh, ; (¢). But we chose théog function  {b;1(t), bi2(t), - -, bir(t)}.
because the benefit increases quickly from zero as the totalet us investigate if there exists any optimal resource
throughput increases from zero and then increases slowly. Tamount for the users and any pricing bound from the providers
reflects the intuition that the initial increase in the perceivatiat will maximize the users net utility. To do so we need
throughput is more important to a user. Moreoveg, function to find whether the net utility given in equation (12) can be
is analytically convenient, increasing, strictly concave anudaximized with respect to the resource amount. If so, then
continuously differentiable. a unigque maximization point exists féf;;(¢) with respect to
Next, we consider the cost components incurred by uséy;(t). Differentiating equation (12) with respect bg;(t),

The first cost component is the direct cost paid to the provider w 1
)

for obtainingb; ; (t) amount of resource. If; () is the price per ~ Uj;(t) = oo pit) =& (——5—7) @4
unit of resource, then the direct cost paid to i provider *J Cj =227 bij(t)
is given by, Similarly, the second derivative is

pj (ﬁ)bij (t) (20) UZ (t) = — Qi 5//( 1 ) (15)

. . - 14 b(¢))2 B NNy
This direct cost component decreases u&erutility. Note ( 5() Cj =2 big(t)
that in expression (10), both price per unit resource and tHewe assume delay and congestion component, such that,

resource amount requested are variables. §'(—=~k—7—>) > 0, then, U/i(t) < 0 and it is clear
The second cost component incurred by the user is the Ci=2, big (1) . .

perceived quality of service, one of the manifestations I\EU”() is strictly concave in the region bounded by

which is the queuing delay which again depends on the,” b;;(t) = Cj; andUy;(t) — —oo asy;” bi;(t) — Cj.

resources consumed by the other users. We assume the quemibgeover, it can be inferred from equation (15) that as

process to beM/M/1 at the links. Thus, the delay costUu(/) < 0, Uy(t) contains a unique maximization point.

component can be written as Thus equating equation (14) to 0, and solving#ig(t) gives

g(W) zfz ) < C; the optimal amount of resources needed by the users for a
im0 b ® . (1)  certain pricep;(t) and this resource amount will maximize
e i35 b (1) 2 G the utility of the user. From the reverse point of view, it is
where N; is the number of users currently served bwlso clear from the above equation (14) that there exists a
provider j and&(-) is a mapping cost function of delay. maximum threshold for the pricg; (t).
Combining all the components obtained in equations (9), As the users are homogeneous, to maximize users’ utility,
(10), and (11), we get the net utility as first derivative of all the users can be equated to zero,
Uiy (8) = iy (£) — py ()b (8) — € (———————)  (12) Ui;(t) = Ug(t) = -+ = Up,;(t) =0 (16)

Cj = X0 bis(t)
Recall, N; is the number of users currently served by provider
We also obtain the utility as obtained by the service Thys equatlon (16) reduces to,

providers. The utility of service provider at timet is,

My % NG (17)
)Zb ® (13) 14+01(t) 14 bg;(t) 1+ b, (1)
ij(t) — K . . :
— Y ! If 14 b;;(t) = mi;(t) and with the help of identity, we get,
where, K is the cost incurred to provider for maintaining aij Zévj aij
network resources. For the sake of simplicity, we assume this ma; (1) = ZNj s (1) (18)
cost to be constant. ! i Mg
D. Price Threshold For notannAz;\_I simplicity, we represent; = > a”.and
. . . . mr;(t) =>; 7 mi;(t). Thus, equation (18) can be written as
Now, we investigate the price constraint from the users’
and providers’ point of view to study the existence of Nash Wij My (19)
equilibrium. Consider usef has a certain resource demand mij(t)  mp;(t)

and wants to connect to a provider at timell the providers Putting the above form into equation (14), we get
advertise their price per unit of resource amount and the exist- ar; 1

ing load. As usei wants to maximize his net utility (potential ~ Uj;(t) = I —p(t)—¢(

benefit minus cost incurred), he computes the resource vector mi;(t) Cj + Nj —mu;(t)
that would maximize utilities from all the providers and théote Uj;(t) is strictly decreasing with the values ofr;(t)
corresponding maximized utility vector. lying in the interval (C;,C; + N;). Then for achieving the

) (20)



Nash equilibrium by the providers, the pricing constraif(t) to be positive. Any other form of(-) would also suffice if

is upper bounded by, the derivatives are positive. Rewriting equation (23), we get
aygq o
arj g 1 Vi(t) = = o (25)
m]j(t) <07+N7 _mlj(t)) (21) (m]j(t) (Cj+Nj 7m”(t)) + )

arj ala+1)
This pricing upper bound helps the provider to reach thet (_(ij(Jt»Z_(C’j+Nj7m]j(t))aJrQ)(ij(t)_Nj)
Nash equilibrium. If all of the other providers and userE

oep et siategies unchanged. and a proviercranges S0 SR (25 o an e euenol ()
strategy unilaterally and decides not to maintain its pricinI its cloged form Thu-s 1o solve the equation V\?e consider a
upper bound, then that provider will not be able to maximiz ecial case ' q '

its users’ utility and thus users will not connect to this provid . .
decreasing provider's revenue pecial case:We assumex = 1 and N; = C; and equate
' equation (25) td) to obtain

V. ESTIMATING THE DEMAND FOR BANDWIDTH (2C; —my;(t)) ¥/ ar;C; = my;(t) (26)

The amount of extra (dynamic) spectrum that a provid&olving the above equation for optimah;;(t), we get,
. . ;0

needs, depends on fch(_a demanq for services by the userm}y(o_pt)(t) = % where,0 = {/ar;C;. _
supports. Therefore it is essential to estimate the resourcessing the optimal value of.;(t), we get the optimal value
consumed by the users and the price that is recovered frofrp;(t) as
them. These estimates will help a provider determine the tuple | (t) = ar ( N 1\ (14042 @7
¢ = {wi, T} Pjopt)\t) = 20 0 20,

Our objective is to maximize providers net utility;; (t) ! ’
subject to the constraint given by equation (21). Replacirgg#;'

S N9 by (t) by my;(t) — N;, we get,

us, we see that the providers can achieve Nash equilibrium
der the given pricing constraint and at the same time they
can maximize their utility if the price is set as given by
ag; T 1 )> (my: ()= N;) equation (27). Next, we use this pricing strategy as an incentive
mr;(t) Cij+N; —mp;(t) Lj J for the providers to upgrade their resources and users to

¢ (22) improve their utility.

vi0=(

A. Pricing as an Incentive

With the strategies to determine the prices and the expected
V(1) = ( ary ' 1 )) (23) profit known, let us investigate if there is any incentive for the

Differentiating equation (22) with respect t0;;(t), we get,

J mr;(t) C; + N; —my,(t) providers to upgrade their radio/network resources, and if this
~ayj e 1 AT additional resource provides any incentive to the users too.
+ ( (mp;(t))? ¢ (Cj + N, — mlj(t)>)(m”(t) Nj) Substitutingm ;o (t) in equation (19), we get
Differentiating again, and studying the expression ¥g(t), Mijopty () = iy (@) (28)
we get,V/’(t) < 0; which implies that utility for the providers arj \1+0
has a maximization point obeying the pricing bound. We know,m;;(t) = 14 b;;(t); the optimal resource consumed
For finding the maxima, we equate equation (23) to 0, whidy useri under provider; is given by
gives the optimal value ofn;;(t). Equation (23) is not in aij [ 2C;
closed form because the exact naturé @f is not known. We bij(opt) (1) = ar; (1 1 ) -1 (29)
4

assume the solution of the above equation tamg ., ().
Of course, for a giveq(-), the value ofn ;4 (t) can always
be obtained.

The optimal price that will maximize providej’s utility

; - - ; be written asp;(op) (1) D biicopt) (t).
can be obtained by substituting; t) in equation (21). 3(opt) i ij(opt) . . o
Thus. we gelt the oyptirljwal ;)Lrliézgégo”t)( ) in equation (21) Note, by using a proper transformation function (which is

beyond the scope of this research), the total utility of provider
ar; 1 j can be converted to a dollar value denoted By(refer

Thus, the optimal amount of resources for a provider to be
demanded from a spectrum broker in the equilibrium can be
given by . b;;opt) (t). Moreover, the utility of providey can

. — — !
Pitort) () M1 j(opt) (t) ¢ (Oj + Nj — Mpjopt) (t)) (24) equation 7) — the total revenue obtained by provigler
Note that,p; ) (t) is clearly dependent ofV;. R= T(pj(opt) () Z bijopt) (t) — Kj) (30)
To have a better insight into the analysis, we assume a i

simple closed form oE(C__Jrle_m_”(%) as ﬁchrNj_lm,j(t))m ~ whereT(-) is some transformation function.

where « is a power coefficient in the de ay and congestion Thus, provider's reservation price is governed by
component. While taking an exact form &f), we made sure

that it satisfies the constraint of itst, 2nd and3rd derivatives © \ Pi(ept) (8) 22 bijopt) () — K ) = Ratatic.



VI. NUMERICAL RESULTS AND INTERPRETATION In figure 6, we show the average revenue generated by

we simulate our auction model and show how the knapsafesence and absence of collusion. Though at the beginning
auction outperforms the classical highest bid auction modef§th less number of bidders, presence of collusion reduces

Later we model the interaction between WSPs and users. the average revenue slightly, but with increase in number
of bidders the effect due to collusion decreases. Thus with

A. Spectrum Auctioning increase in number of bidders, i.e., with increase in (perfect)
The main factors that we consider for demonstrating tlmmpetition, revenue generated even in the presence of collu-
performance of the proposed knapsack auction are: reversimn reaches almost the same value as that of without collusion.
generated by spectrum broker, total spectrum usage, drigure 7 presents the usage of spectrum in the presence and
probability of winning for bidders. For the simulation modehbsence of collusion. The most interesting result from bidders’
we follow second price sealed-bid mechanism. We could haperspective is shown in figure 8. When the number of bidders
chosen the first price bidding policy; the only reason fds low (less than or equal té in our case) collusion provides
choosing second price policy is that it has more propertibgtter probability of winning but as the number of bidders
than first price in terms of uncertainty [20]. We assume thatcreases, probability of winning with the help of collusion
all the bidders are present for all the auction rounds; biddetecreases, discouraging bidders to collude.
take feedback from previous rounds and generate the bid tuple
for next round. The bid tuple; generated by bidderconsists 5500 ‘ - :
. .. . —— Knapsack Auction algo
of i) amount of spectrum requested; and ii) the price the s~ Classic Second Price Auction Algo
bidder is willing to pay,z;. 50001
For simulation purpose, the parameters considered are as
follows. Total amount of spectrum in CAB is assumed. &8
units, whereas min. and max. amount of spectrum requested
by each bidder id1 and 50 units respectively. Min. bid per
unit of spectrum is considered a5 unit.
Revenue and spectrum usageFigures 2 and 3 compare
revenue and spectrum usage for two strategies for each auction
round. The number of bidders considered(sNote that, both A tion rounds
revenue and usage are low in the beginning and subsequentlyiq > Revenue Maximization with auction rounds (with 10 bidders)
increases with rounds. In the initial rounds, bidders are dubious
and make low bids. With increase in rounds, potential bidders 105 ‘ - :

. —— Knapsack Auction algo
emerged as expected and raised the generated revenue. We —+— Classic Second Price Auction Algo
observe that the proposed auction generates 10-15% more
revenue compared to the classical model and also reaches
steady state faster.

Bidder participation: In figures 4 and 5, we look at our
auction model from the bidders’ perspective. Higher revenue
requires high participation in number of bidders. However,
classical auctions always favor bidders with high spectrum re- gl
guest and/or high bid, thus discouraging low potential bidders ‘ ‘ ‘ ‘
and giving the higher potential bidders a chance to control 0 B onrougs 100
the auction. In order to evaluate the bidder participation, we Fig. 3.

consider two cases: a) bidder with the lowest spectrum request

and b) bidder with the lowest bid. For these two cases, we
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compare the two strategies in terms of probabilities to win —— Knapsack Auction algo
. . = 097 —— Classic Second price Auction Algo

a bid. We observe that the proposed auction strategy has a =

significantly high probability of winning compared to classical S 4

strategy. Note that probability of winning in classical strategy S el

almost reaches zero with increase in bidders. %0,5,

Collusion prevention: The occurrence of collusion must be §0.4—

prevented in any good auction so that a subset of bidders v 03l

can not control the auction that might decrease the spectrum g ozl

broker's revenue. We consider two cases: i) when bidders “oaf

collude and ii) when bidders do not collude. In our simulation % is

5 10
Number of Bidders

model, we assume bidders randomly collude in pair in all _ N e
possible combinations with others. Fig. 4. Probability of winning with lowest spectrum request
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B. Pricing: Numerical results

Here, we provide some insights on how the pricing strat
gies proposed for WSP and end users interaction work

incentives for both. We consider two cases — fixed and
increasing number of users.

e Fixed number of users:We keep the number of users fixed
with the total resource of the provider increasing. Recapitulate
from equations (27) and (29) that increasing resource implies
increasingC; and fixed number of users implies a fixed value
of ar;. We consider all users have equal weightage factor
a;; = 1.5 and the value of’; varies froml to 100 units. These
values used for obtaining the numerical results are arbitrary
and are merely for the sake of demonstration. Any other values
of a;; andC; can be used as long as they satisfy the constraint
that the price per unit resource is positive.

Figure 9 shows how the provider must decrease the price per
unit of resource if the total amount of resources increases with
the same user base. This decrease in unit price is necessary if
resource utilization is to be maximized which also serves as
an incentive for the users.

The total profit of the provider is presented in figure 10.
With the number of users fixed, we observe that the total
profit of the provider increases till a certain resource and then
decreases. For a fixed number of users, this result allows us to
estimate the amount of resource that the provider must have
such that its profit is maximized.

Price per unit resource

0 20 40 60 80 100
Resource

Fig. 9. Price per unit of resource vs. resource (with number of users fixed)

Total profit

3.5
0

20 40 60 80 100
Resource

Fig. 10. Total profit of a provider vs. resource (with number of users fixed)

e Increasing number of users: The number of users (pop-
ulation base) is increasing in this case which is typical of
any market. We start with 1 user under a provider. For fair
gpmparison with the previous case (i.e., with fixed number of
lé%ers), we increase resources from 1 to 100 units. Note that,



ar; is no longer fixed and increases with increasing numbender certain threshold conditions. We also show how proper
of users. For this simulation, we assume that the increasepiticing can provide incentives to providers to upgrade their
number of users is such that the ratioagf andC; is fixed. resources and users to opt for better services.

In figure 11, the price per unit of resource is presented. As
the initial number of users is very low, increasing resource _ ) ) o

. initial i . . it of resourcIel] B. Aazhang, J. Lilleberg, G. Middleton, “Spectrum sharing in a cellular

necessitates an Initial increase In price per unit o CE." system”, IEEE Symp. on Spread Spectrum Techniques and Applications,
But as the number of users increase, it is imperative that price 2004, pp. 355-359.

per unlt resource decreases prOVIdIng Incentlve for the userg] K. Back and J. Zender,.“AUCtiOnS.of divisible gOOdS: on the rationale
for the treasury”, Rev. Finan. Studies, vol. 6, no. 4, pp. 733-764, 1993.

Ir_] figure 12, _We present_ the total profit of the p_rOVider-B] M. Buddhikot, P. Kolodzy, S. Miller, K. Ryan and J. Evans, “DIM-
Unlike the previous case (figure 10), we see that with users SUMnet: New Directions in Wireless Networking Using Coordinated
increasing proportionally with resources, the total profit is Dynamic Spectrum Access’, IEEE WOWMoM, 2005, pp. 78-85.

| . . hich b . . " h[él] M. Buddhikot, K. Ryan, “Spectrum Management in Coordinated Dy-
always Increasing which presents a better incentive for t namic Spectrum Access Based Cellular Networks”, IEEE DySpan, 2005,

providers than the case with fixed number of users. Note, the pp. 299-307.
linear increase in profit is just due to the assumption: the ratiy! R Chakravorty, S. Banerjee, S. Agarwal, . Pratt, "MoB: A Mobile
. Bazaar for Wide-area Wireless Services”, Proceedings of the 11th
between the users and resources is fixed. annual international conference on Mobile computing and networking,
(MobiCom) 2005, pp. 228-242.
oo [6] E. H. Clarke, “Multipart pricing of public goods”, Public Choice, \Vol.
11, 1971, pp. 17-33.

[7] L. He, J. Walrand, “Pricing Internet Services With Multiple Providers”,
Allerton 2003.
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